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THE CLUSTERING OF EXTREME MOVEMENTS: STOCK
PRICES AND THE WEATHER

Atanu Sahaa, Burton G. Malkiel b and Alex Grecuc

A robust finding in this paper is that extreme movements in stock prices and temperature are
usually preceded by large average daily movements during the preceding three-day period. This
suggests that investors might fashion a market timing strategy, switching from stocks to cash in
advance of predicted extreme negative stock returns. In fact, we have been able to simulate market
timing strategies that are successful in avoiding nearly eighty percent of the negative extreme move
days, yielding a significantly lower volatility of returns.

1 Introduction

There is considerable empirical evidence suggesting
that the random walk model for changes in stock
prices can be rejected and that the distribution of
stock returns is distinctly non-normal. Researchers
have observed that the key deviation from normal-
ity stems from the existence of “fat tails”: there are
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a significantly higher number of extreme values—
both negative and positive—than would be found
in a normal distribution. This paper deals with the
stock-market returns that reside in the fat tails. Its
main objective, however, is not to present further
evidence on higher-than-normal frequency of days
with large changes. Instead, we focus on examining
the duration between one extreme-move day and
the next. We use duration-model analysis to exam-
ine the factors that are associated with the onset of
days with unusually large changes in the Dow Jones
Industrial Index for the years 1900 through 2006.
We undertake a similar analysis in examining the
duration between days with extreme movements in
temperature using New York Central Park data for
the years 1901 through 2006. We find striking sim-
ilarity in the patterns of extreme change in the Dow
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and in New York temperature. We also find that the
existence of extreme-move days is at least partially
predictable. Finally, we ask whether the predictabil-
ity of extreme-value changes in the stock market can
be employed to develop a useful portfolio-timing
strategy.

We make no attempt to propose a stochastic pro-
cess for stock returns or temperature changes. The
modest goal of this paper would be accomplished
if it triggers further inquiry into the question
whether there exists a stochastic process common to
many random phenomena, including stock market
returns.

2 The relevant literature

The idea that no useful regularities exist in security
prices that would enable investors to earn “abnor-
mal” profits is one that goes back for more than a
century. While Paul Samuelson (1965) is often asso-
ciated with the general idea that stock prices change
randomly, the random walk thesis dates back at least
to the time of Bachelier (1900). Bachelier’s doc-
toral dissertation developed a theory of stochastic
processes that was applied to prices of French gov-
ernment bonds. Bachelier found that price changes
looked very much like a random walk process. His
work lay dormant for almost 60 years until it was
discovered by Paul Samuelson.

Essentially Samuelson argued that economists
should expect price changes to be random. The
profit seeking behavior of investors should eliminate
any predictable movement in stock prices. Samuel-
son defines “properly intercepted prices” as prices
that at every date t ≤ T are based on all available
information at �t , including all past price realiza-
tions for the security. If the security has a single
payoff Xt , assumed to be a random variable, then
for all t ≤ T :

Pt = E(Xt/�t ).

Samuelson then proved that prices will fluctuate
randomly since for all t ≤ T :

Pt = E(Pt+1/�t ), or E(�Pt+1/�t ) = 0.

If prices are properly anticipated, then all useful
information contained in past price series will be
incorporated into current prices. Prices will follow
a martingale and successive price changes will be
uncorrelated.

Much of the subsequent empirical work on stock
prices has found that the stock market does not meet
the conditions for a random walk. Lo and MacKin-
lay, in their book A Non-Random Walk Down Wall
Street, are able to reject the random walk hypothesis.
They define Xt as the log of Pt and assume prices
have the recursive relationship

Xt = µ + Xt−1 + εt ,

where µ is an arbitrary drift parameter and εt is the
random disturbance term. The traditional random-
walk hypothesis restricts the εt s to be independently
and identically distributed normal random variables
with a constant variance. Lo and MacKinlay are able
to reject the random-walk hypothesis for weekly
stock returns (of both indices and individual stocks)
using a simple volatility-based specification test.
Not only do they report significant positive serial
correlation for weekly and monthly holding period
returns, they further conclude that mean reverting
models of Shiller and Perron (1985) and Fama and
French (1987) cannot account for the departures of
returns from random walk.

There is considerable evidence of several non-
random patterns in the movement of stock prices.
For example, Keim and Stambaugh (1985), Cross
(1973), French (1980), Gibbons and Hess (1981),
and Rogalski (1984) find evidence of day-of-the-
week and weekend effects on stock returns, while
Bremer and Sweeny (1991) find extremely large
negative 10-day returns are followed on average by
larger-than-expected positive rates of return over the
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following days. But none of this work appears to
contradict the efficient-market hypothesis (EMH).
Whatever predictable patterns that do exist do
not appear to be large enough (or dependable
enough) to permit an investor to make abnormal
returns after paying transactions costs. Therefore,
the evidence against the random walk hypothesis is
not inconsistent with the practical implications of
EMH.

Another predictable pattern in the behavior of stock
prices is the subject of this paper. Work by Osborne
(1963), Alexander (1964), and Mandelbrot (1963)
finds that the occurrence of transactions in a given
stock is not independent of the past history of trades
in that stock. There is a clustering of activity. Trad-
ing tends to come in “bursts.” If recent trading
activity is heavy, it is highly likely to continue to
be heavy. Similarly, large price changes are likely
to be followed by large changes in prices; as Man-
delbrot (1963) writes, “…large changes tend to
be followed by large changes—of either sign—and
small changes by small changes…”.

In this context, the ARCH model (Engel, 1982)
and its generalization to the GARCH (Bollerslev,
1986) specifications are relevant. These models set
conditional variance equal to a constant plus a
weighted average of past squared residuals. These
models (as well as their numerous generalizations)
have been proposed to explain two fundamental
characteristics of stock returns: the presence of a
surprising large numbers of extreme values and
the fact that both the extremes and quiet periods
are clustered in time. Despite the ubiquitous pres-
ence of GARCH models, however, many financial
empiricists have observed that volatility responds
asymmetrically to the nature of news—volatility
tends to rise in response to “bad news” and to fall in
response to “good news,” contrary to the predictions
of GARCH models (Nelson, 1991). GARCH mod-
els assume that only the magnitude and not the sign
of unanticipated excess returns determines future

volatility. Nelson (1991) recognized that large price
declines forecast greater volatility than similarly
large price increases. Since then numerous studies
have found evidence of nonlinearity, asymmetry,
and long memory properties of volatility (Engel,
2004).

Our paper complements this body of literature. To
our knowledge ours is the only study that examines
the temporal properties of “fat tails.” We analyze
the time duration between extreme daily move-
ments in the Dow Jones Index. Consistent with
Nelson’s findings, we find that today’s extreme
return is indeed a powerful predictor of the next
extreme value day. Additionally, days with extreme
returns are preceded by large moves, both for
negative and positive returns, although the relation-
ship is asymmetric. Similarly, there is a temporal
asymmetry—extreme value days are preceded by
but are not followed by large moves days. Inter-
estingly, we find a remarkably similar pattern in
extreme changes in New York temperature (mea-
sured by the percent deviations from daily normal
temperature). We undertake various tests to confirm
the robustness of the results.

Finally, we explore whether the negative extreme
value days are predictable enough to devise a useful
asset allocation portfolio strategy. We ask whether
an investor could unwind a long position in the
stock market (as measured by the Dow Index)
when the model predicts a high likelihood of a
negative extreme-move day and temporarily hold
cash. After a fixed period over which the portfo-
lio remains unwound, the investor is assumed to
re-initiate a long position in the Dow Index. We
demonstrate that this portfolio strategy does not
outperform a buy and hold investment in the Index
when one allows for reasonable transaction costs.
However, this asset allocation strategy is successful
in avoiding nearly eighty percent of the extreme
negative move days, yielding a significantly lower
volatility of returns.
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3 The data and descriptive statistics

In this section, we describe the data used in the
analysis of daily stock-market returns and NY
temperature changes. We also provide some sim-
ple statistics on the magnitude and frequency of
the extreme-move days to motivate the duration
analysis that follows in the next section.

We employed daily data on the Dow Jones Indus-
trial Index for all trading days in the period between
January 1, 1900 and December 31, 2006. Panel A

Table 1A Dow Jones daily stock returns compared with draws from a normal distribution.

Panel A: Comparison of Frequencies of Days
Dow Jones daily returns: 1900–2006 Random draws from a normal distribution

# of Sigmas from Number of Percentage # of Sigmas from Number of Percentage
the mean observations of total the Mean observations of total

Greater than 1 5,203 19.4% Greater than 1 8,568 31.9%
Greater than 2 1,217 4.5% Greater than 2 1,208 4.5%
Greater than 3 427 1.6% Greater than 3 70 0.3%
Greater than 4 183 0.7% Greater than 4 1 0.0%
Greater than 5 82 0.3% Greater than 5 0 0.0%
Greater than 6 52 0.2% Greater than 6 0 0.0%

Sub-Total 7,164 Sub-Total 9,847

Total Trading Days 26,884 Total Observations 26,884

Panel B: Time Interval Between 3-Sigma Plus Days
Dow Jones daily returns: 1900–2006 Random draws from a normal distribution

Time interval Number of Percentage Time interval Number of Percentage
in days observations of total in days observations of total

1 76 17.8% 1 0 0.0%
2 57 13.4% 2 0 0.0%
3 to 5 96 22.5% 3 to 5 0 0.0%
6 to 25 93 21.8% 6 to 25 4 5.8%

Subtotal 322 75.6% Sub total 4 5.8%

Greater than 25 104 Greater than 25 65

Total 426 Total 69

Note: A “3-Sigma Plus day” is one where the daily absolute return of Dow Jones Average is greater than or equal to 3-sigmas
from the mean daily returns.

of Table 1A provides some relevant statistics about
the daily returns, measured in terms of logarithmic
changes (i.e., ln(It/It−1), where It is the value of
the Index on day t ).

Our sample consists of 26,884 daily returns. For this
sample, the average daily return is 0.0195%, and the
standard deviation (σ) of daily returns is 1.131%,
which translates to an annualized1 mean of 7.02%
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and sigma of 21.46%. To provide a benchmark, we
generated 26,884 pseudo returns by drawing ran-
dom numbers from a normal distribution with the
same mean and sigma as in the sample of returns of
the Dow Jones Index.

Panel A of Table 1A shows that in about nearly
eighty percent of the trading days—80.6% to be
precise—the Dow’s daily change was less than
one sigma away from its mean daily return. In
the random draws from the normal distribution
only 68.1% of the observations were less than one
sigma away from the mean. However, the con-
trast between the two distributions (Dow returns
and draws from a normal distribution) is most pro-
nounced for days where the returns are three or
more sigmas away from the mean. Extreme value
days are far more prevalent for the Dow than for the
normal distribution. These findings are consistent
with the evidence of “fat tails” noted in numerous
prior research studies.

In Panel B of Table 1A, we examine the daily time
interval between one extreme-move day to the next.
Here we define an “extreme-move” day as one where
the absolute value of the daily return is more than
three sigmas away from the mean (which we will
call a “3σ+ day”). Interestingly, of the 426 time
intervals between the 3σ+ days, 322 had inter-
vals less than or equal to 25 days; and more than
31% of the 3σ+ days occurred within two days of
each other! This clustering of extreme-move days
for the Dow is very different from what is found
from random draws from a normal distribution. If
the stochastic process underlying the Dow’s return
were normal, one would have observed less than 6%
of extreme-move days to have a time interval of less
than or equal to 25 days; by contrast, for the Dow
this percentage is 76%.

We further explore the phenomenon of the cluster-
ing of extreme-move days for the Dow in Panel A
of Table 1B. The average duration in days (i.e. the
time interval) between one 3σ+ day and the next

for the entire period, 1990–2006, was 178 days (the
median was 116 days). Excluding the 1930s, this
average rises to 194 days (the median is 126 days).
Of the 427 3σ+ days, more than half occurred in
1930s. Indeed, in the 1930s, 9% of all trading days
were characterized by returns greater than three sig-
mas from the mean. By contrast, the 1950s were
years of calm: less than 1/4 of 1 percent of trading
days were ones with extreme moves.

The clustering of 3σ+ days over the decades is
illustrated in Figure 1. The figure suggests several
interesting observations. First, there seems to be a
considerable clustering of extreme-change days. We
note that the greatest clustering took place during
the late 1920s and early 1930s, reflecting the boom
and bust of the stock market and the depression that
followed. Another clustering is apparent around the
recession (depression) of economic activity in the
late thirties and the uncertainty leading up to World
War II. The most recent clustering occurred during
the late 1990s and early 2000s associated with the
high-tech internet bubble, the busting of the bub-
ble, and the recession of the early 2000s. Note the
existence of a few outliers of extremely large one-
day declines in the stock market, of which the crash
of October 19, 1987 stands out. Finally, note that
the picture of large positive and negative changes
is generally symmetric, with the exception of the
aforementioned highly unusual steep declines, and
that there is no evidence of increasing volatility over
time. Indeed, there have been large gaps of several
years during which no three-sigma events occurred.

We also gathered data on the daily temperature
in New York’s Central Park2 for the years 1901
to 2006. We then defined the temperature’s daily
“change” as the percent deviation from the “normal”
temperature for that day. In calculating the daily
normal temperature, we used the 106-year average
for any given day. Our sample consists of 38,655
observations of daily percent deviations from nor-
mal temperature. The standard deviation (σ) for the
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Table 1B Extreme-move days for the Dow Jones and New York temperature: Number of days by decade.

Panel A Panel B

New York daily average temp’s %
Dow Jones daily returns: 1900–2006 Deviation from normal: 1901–2006

Number of % of Average duration Number of % of Average duration
3 -sigma trading between 3-sigma 3-sigma Calendar between 3-sigma

Decade plus days days plus days Decade plus days days plus days

1900s 37 1.47% 62 1900s 11 0.34% 292
1910s 28 1.16% 93 1910s 30 0.82% 121
1920s 43 1.72% 59 1920s 13 0.36% 279
1930s 225 8.94% 11 1930s 27 0.74% 124
1940s 17 0.67% 135 1940s 15 0.41% 264
1950s 4 0.16% 567 1950s 13 0.36% 228
1960s 5 0.20% 309 1960s 20 0.55% 181
1970s 11 0.43% 343 1970s 23 0.63% 189
1980s 24 0.94% 116 1980s 21 0.57% 175
1990s 11 0.44% 207 1990s 30 0.83% 108
2000s 22 1.25% 51 2000s 17 0.66% 171

Total 427 Total 220

Average 1.58% 178 Average 0.57% 194
Average w/o 1930s 0.84% 194

Note: A “3-Sigma Plus day” is one where the daily absolute return of Dow or the absolute deviation from normal temperature is greater than
or equal to 3-sigmas.

sample of daily temperature changes is 1.46%. We
then defined an “extreme-move” day as one where
the percent deviation in temperature exceeded three
sigmas away from the mean. As we did for the stock
market, we call these 3σ+ days.

Panel B of Table 1B contains data on the occur-
rence of and the duration between 3σ+ days for
New York temperatures. Comparisons of Panels A
and B reveal some interesting differences and sim-
ilarities. Unlike the Dow, extreme-move days for
NY temperature are more evenly distributed across
the decades. For the years 1901–2006, there were
a total of 220 extreme movement days in tempera-
ture. While temperature change extremes occurred
only about half as often as extreme movements for
the Dow, such movements are far more comparable

if the 1930s are excluded for the Dow. For NY tem-
perature, the average duration in days between one
3σ+ day to the next is 194 days, which is higher
than the 178 days figure for the Dow. However, for
the Dow, if one excludes the 1930s, the average
duration between 3σ+ days becomes 194, exactly
the same as the average duration between extreme
value days for the NY temperature.

4 Duration analysis

In this section, we explore the factors that may
explain the onset of an extreme-move day. In
particular, we examine whether extreme-value
days—both for the Dow and the NY temperature—
are preceded and followed by larger-than-average
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Figure 1 The Clustering of extreme movements in stock prices: Daily returns of Dow Jones index on large-move
days, 1900–2006.

changes. We begin with a simple regression analy-
sis of the time between extreme value days and then
undertake a more formal duration analysis using the
Cox Proportional Hazard model.

The key explanatory variables we consider are: (i)
the average (of the absolute value of returns for the
Dow and the percent deviations from normal for
temperature) daily move in the three-day interval
immediately preceding a 3σ+ day; (ii) the average
daily move in the three-day interval immediately
after a 3σ+ day; and (iii) the percentage change, in
absolute terms, on a 3σ+ day.3

The important statistics (mean and standard devi-
ation) for these three variables are presented in
Table 2. As a benchmark for comparison we also
present the statistics for the absolute value of returns
and the daily deviation for the entire sample of

26,884 observations for the Dow and 38,655 for
the NY temperature. The first row of this table
shows that the mean absolute value of the Dow’s
daily returns is 0.743% for the entire sample and
the standard deviation is 0.853%. These figures dif-
fer from the ones presented in Table 2 because here
we report the mean and standard deviation of the
absolute value of the returns.

The next three rows of Table 2 contain sum-
mary statistics on the three explanatory variables.
The mean and standard deviation for these three
variables are based on 427 observations for Dow
and 220 observations for NY temperature, which
corresponds to the number of 3σ+ days for
each.

Comparison of the figures in the first row to the
ones in rows two and three of Table 2 reveals that
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Table 2 Descriptive statistics for extreme-move days for stock prices and NY
temperature.

New York daily average
Dow Jones daily temp’s deviation from

returns: 1900–2006 normal: 1901–2006

Standard Standard
Mean deviation Mean deviation

Absolute value of daily 0.743% 0.853% 1.138% 0.909%
return/daily change (N = 26, 884) (N = 38, 655)

Average daily move 3-days 2.105% 1.741% 2.563% 1.107%
before a 3 sigma-plus day

Average daily move 3-days 2.122% 1.602% 2.441% 1.102%
after a 3 sigma-plus day

Average daily move on the day 4.952% 2.166% 4.984% 0.556%
of a 3-sigma plus day

Number of observations 427 220

the average daily movement in the three-day inter-
val preceding and following a 3σ+ day is markedly
different from the typical daily movement. For
example, the average daily return in the three-
days before a large-move days is 2.11%, which is
almost three times larger than the average daily
return in the sample. The same holds true for the
average daily return during the three-day period
after a 3σ+ day. The mean absolute return on
all 3σ+ days is 4.96%, almost seven times larger
than the average for all days. This difference is to
be expected because of the 427 days with 3σ+
returns, there are a sizeable number of days with
returns as much as six or seven sigmas away from
the mean.

Turning now to the summary statistics on the
explanatory variables for the NY temperature, we
find a remarkable similarity with the Dow’s moves.
The mean daily deviations in the three days before
and after a 3σ+ day is considerably larger (approxi-
mately 2 1/2 times) than the average daily deviations
from normal temperature for all days. Interest-
ingly, the means of the variable “daily move on the

day of a 3σ+ day,” are virtually identical for the
NY temperature and the Dow; 4.98% and 4.95%,
respectively.

The summary statistics in Table 2 suggest that
these variables may have some explanatory power
to predict the onset of extreme-move days. How-
ever, before undertaking a formal duration analysis,
it may be useful to examine the time interval
between 3σ+ days using a simple least squares
regression. The results of two least squares anal-
yses, one for the Dow and the other for NY
temperature, are presented in Table 3. The depen-
dent variable in each regression is ln (T ), where
T denotes the time interval in days from one
extreme movement day to the next. The explana-
tory variables are the ones discussed in the preceding
paragraphs.

Qualitatively, the results for the Dow and the NY
temperature are very similar. In both cases, the coef-
ficient of the variable “average daily move 3-days
before a 3σ+ day” is negative and highly signifi-
cant (with t -statistics exceeding 10), whereas the
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Table 3 Least squares analysis of the time interval between 3 sigma-plus days.

New York daily average
temp’s deviation

Dow Jones daily returns from normal

Estimated Estimated
coefficient T -stat coefficient T -stat

Three-days before −54.87 −12.20∗∗∗ −123.73 −10.04∗∗∗
Three-days after −8.21 −1.64 5.21 0.41
The day of −6.37 −1.77 −68.14 −2.65∗∗∗
Intercept 3.72 19.54∗∗∗ 9.84 8.22∗∗∗
Number of obs 427 220
Adjusted R-squared 0.327 0.362

Note: The dependent variable in each regression is the log of the duration in days between 3-sigma-plus days.
Definitions:
For the Dow, the sigma is based on the standard deviation of daily log returns.
For New York Temp, the sigma is based on the standard deviation of daily % deviation from normal (= 106-year average)
tempertaure.
The 3-Days Before (after): for the Dow, it is the average absolute return in the three days prior (after) to a 3-sigma-plus
day; for NY temp, it is the average absolute % deviation three days prior (after).
The Day of: For the Dow it is the abosulte value of return, for NY Temp it is the absolute % deviation on a 3-sigma-plus
day.
∗∗∗denotes statistcially significant at 99% level of confidence.

coefficient of the variable “average daily move 3-
days after” is not. Thus, we find that extreme value
days are preceded by, but not necessarily followed
by, changes that are relatively large.

The coefficient of the variable “daily move on a 3σ+
day” is negative for both the Dow and the NY tem-
perature, but not significant at the 95% level for
Dow. The negative coefficient of this variable sug-
gests that the magnitude of the change on a 3σ+ day
is itself negatively correlated with the time interval
between extreme-move days.

4.1 Duration analysis using the cox proportional
hazard model

In Table 4A, we present the results of the duration
analysis using the Cox Proportional Hazard model.
We use the semi-parametric Cox model rather than
a parametric model such as the Weibull or logistic

models because the Cox model does not impose a
particular shape to the hazard function.

In comparing the estimated coefficients of the
explanatory variables in the least squares regression
and the Cox model, one should note that the signs
of the coefficients are expected to be positive rather
than negative. Positive estimated coefficients imply
that these variables shorten the duration, i.e., “has-
ten” the arrival of the next 3σ+ day. For example,
consistent with the regression findings, the esti-
mated coefficient of the variable “average daily move
3-days before a 3σ+ day” is positive and signifi-
cant at the 99% confidence level in the Cox model
both for the Dow and the NY temperature. Simi-
larly, the estimated coefficient of the variable “daily
move on a 3σ+ day” is also positive and statistically
significant, both for the Dow and the NY tem-
perature. However, the coefficient of the variable,
“average daily move 3 days after a 3σ+ day” is not
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Table 4A Estimation of time between extreme-move days using the Cox duration model.

Dow Jones: 1900–2006

Excluding the 1930s NY Temp: 1901–2006

Coeff-Est Z-stat Coeff-Est Z-stat Coeff-Est Z-stat

All 3-Sigma Plus Days
3-Days Before 32.74 13.25∗∗∗ 29.80 8.11∗∗∗ 45.60 6.69∗∗∗
3-Days After 4.49 1.42 1.21 0.27 −2.03 −0.31
That Day 6.26 2.51∗∗ 7.27 2.09∗∗ 43.98 3.38∗∗∗

Number of Obs 427 202 220

Only Positive 3-Sigma Plus Days
3-Days Before 89.38 9.97∗∗∗ 115.94 6.10∗∗∗ 36.46 3.76∗∗∗
3-Days After 23.53 3.07∗∗∗ 15.98 1.13 9.48 1.06
That Day 10.72 2.50∗∗ 21.57 2.16∗∗ 47.19 2.08∗∗

Number of Obs 178 80 115

Only Negative 3-Sigma Plus Days
3-Days Before 46.35 9.84∗∗∗ 41.13 6.18∗∗∗ 45.75 4.48∗∗∗
3-Days After 3.77 0.89 2.64 0.48 −6.34 −0.59
That Day 9.07 3.45∗∗∗ 10.98 3.25∗∗∗ 39.78 2.31∗∗

Number of Obs 249 122 105

Note: See Table 3 for definition of the variables.
∗∗∗denotes statistcially significant at 99% level of confidence.
∗∗denotes statistcially significant at 95% level of confidence.

statistically significant for both the Dow and the
NY temperature.

For the Dow, we re-estimated the Cox model by
excluding the 1930s (which leaves us with 202 3σ+
days). The results stay virtually unchanged: the signs
and significance of the estimated coefficients are
identical to those using the entire sample period
1990–2006.

To explore Nelson’s (1991) observation that there is
an asymmetry in the market’s response to “good
news” and “bad news,” we next considered the
two subsets—positive and negative 3σ+ days—
separately. In examining these subsets, we define
the explanatory variables slightly differently than
before. For example, for the set of only positive

3σ+ days, the variable “average daily move 3-days
before a 3σ+ day” now measures the average of
only the positive returns or temperature changes
in the three-day intervals. The converse applies to
the explanatory variables for the analysis of negative
3σ+ days: the average of only the negative moves
in the three-day intervals is measured.

The results are consistent across sub-samples. The
coefficients of the variables “average daily moves
three days before” and “the day of” for both negative
and positive 3σ+ days, remain statistically signif-
icant for the Dow (with and without the 1930s
included) and for the NY temperature. Similarly,
the coefficient of the variable “three day after” is
insignificant in all cases except for positive 3σ+
days for the Dow. However, even in this case, the

FIRST QUARTER 2009 JOURNAL OF INVESTMENT MANAGEMENT

Not for Distribution



30 ATANU SAHA ET AL.

coefficient estimate becomes insignificant when the
1930s are excluded from the estimation.

Although the estimation results for positive and
negative 3σ+ days are qualitatively similar in term
of the signs and significance of the estimated coef-
ficients, there are some differences, particularly for
the Dow. The coefficient of the variable “average
daily move 3-days before” is substantially larger for
positive 3σ+ days than the negative ones for the
Dow. This result holds true even when one excludes
the 1930s. This implies that the positive returns
in the three-day period before a positive 3σ+ day
“hasten” the arrival of the next extreme, positive-
move day much more than does the negative returns
preceding a negative 3σ+ day.

However, a similar asymmetry is not observed for
positive and negative large-movement days in the
NY temperature. In fact, the coefficient of the vari-
able “average daily move three days before” for the
positive 3σ+ days is slightly smaller than the coef-
ficient of this variable for negative extreme-move
days.

Despite these minor dissimilarities, the nine sets
of duration model results contained in Table 4A
are remarkably consistent. For both the Dow Jones
and the NY temperature, larger-than-average moves
three days prior and on the day of a 3σ+ day
“hasten” the arrival of the next extreme-move day.

4.2 Validation of the robustness of results

We have undertaken a large number of variations
of the Cox duration model to verify that our results
are robust. For example, (a) we have considered
the average moves during different windows of
time (e.g., three-day, five-day, seven-day windows)
before and after a 3σ+ day; (b) we have excluded
various sub-periods, including the years 1928–1935
for the Dow; (c) we have excluded observations
where the difference between two consecutive trad-
ing days exceed four days as was the case during the

World Wars or 9-11-2001 for the Dow; (d) we have
excluded all observations with moves greater than or
equal to 5-sigmas to examine the impact of outliers;
(e) we have included a variety of dummy variables
for decades, for months of the year, for periods of
recession, etc. While we do not report the results of
all these robustness checks here, they are available
on request. They confirm that the key findings of
this paper are remarkably robust. In Table 4B, how-
ever, we provide a few examples of these robustness
checks.

As shown in this table, we re-estimated the duration
model for the Dow with two sub-periods: 1900–
1950 and 1951–2006. The daily σ for the first sub-
period is a fair bit higher since it includes the 1930s:
1.33% versus 0.91%. Despite this difference, the
explanatory power of the model and the qualitative
results across the two sub-periods are very similar.
The coefficient of the variable “average daily move 3-
days before” continues to be positive and statistically
significant at the 99% level of confidence.

In this table, we also report results when a dummy
variable for recession quarters is included in the
model. The “recession” dummy variable takes a
value of one for all trading days in the quarters
that the National Bureau of Economic Research4

has identified as being recessionary. The recession
dummy is not statistically significant in either sub-
period, 1900–1950 or 1951–2006; and the sign
and significance of the “three days before” variable’s
coefficient estimate remain unchanged.

The remarkable consistency of the results—
particularly the finding that extreme-move days are
preceded by but not necessarily followed by periods
of higher volatility—across two seemingly unre-
lated random phenomena, stock-market returns
and temperature changes, seem to suggest the exis-
tence of a common stochastic process. We do not
propose such a process here. We believe our find-
ings simply lend further support to the arguments
of financial economists and mathematicians who

JOURNAL OF INVESTMENT MANAGEMENT FIRST QUARTER 2009

Not for Distribution



THE CLUSTERING OF EXTREME MOVEMENTS: STOCK PRICES AND THE WEATHER 31

Table 4B Results of Cox duration model estimation: Pre and Post 1950s.

Coeff-Est Z-stat Coeff-Est Z-stat

Dow Jones: 1900–1950 (Sigma = 1.334%)
3-Days before 38.18 10.11∗∗∗ 37.53 9.83∗∗∗
3-Days after −2.60 −0.57 −3.25 −0.71
That day 7.50 2.19∗∗ 7.41 2.18∗∗
Recession 0.19 1.26

Number of Obs 223 223

Dow Jones: 1951-2006 (Sigma = 0.909%)
3-Days before 28.07 6.40∗∗∗ 28.08 6.39∗∗∗
3-Days after 6.92 1.10 6.91 1.10
That day 0.59 0.11 0.61 0.11
Recession 0.01 0.05

Number of Obs 154 154

Note: See Table 3 for definition of the variables.
∗∗∗denotes statistcially significant at 99% level of confidence.
∗∗∗denotes statistcially significant at 95% level of confidence.

have contended that many complex random pro-
cesses, including stock-market returns, cannot be
explained by simplistic processes such as the random
walk. The challenge, however, lies in uncovering
and formulating the stochastic processes that can be
shown to possess a reliable degree of predictability.5

5 Predictability and the returns of a portfolio
strategy

In this section, we explore the predictive power of
our duration-model results and examine whether
they can be used to produce a useful market tim-
ing strategy. In particular, we examine whether our
model can be used to predict an extreme, negative-
move day in the stock market where the investor
could shift a portfolios’ asset allocation from stocks
to cash. Of the three explanatory variables used in
the duration analysis, only one, “the average daily
move three days before a 3σ+ day,” has the poten-
tial to be used as a predictor, because the value of
other explanatory variables is not known until after
a large-move has already occurred.

Our proposed asset allocation strategies are based on
our empirical finding that negative extreme-move
days are typically preceded by days when equity
returns are negative and unusually large in absolute
value.6 Based on this finding, we use the following
rules to construct asset-allocation strategies:

(a) From the beginning of our sample period, the
portfolio is 100 percent invested in the Dow
index. That is, the portfolio’s daily return is
assumed to be the same as the Dow’s.

(b) If a day’s return is negative, and the average
absolute value of the preceding three day’s neg-
ative returns exceeds a set threshold, then the
portfolio is unwound and reinvested in cash.

(c) The portfolio stays unwound for a set period of
time over which the assets earn a rate of return
equivalent to the risk-free rate.

(d) After the set period of time, the investor is
assumed to re-initiate a long position in the
Dow index.

(e) The portfolio incurs a fixed transaction cost,
both for unwinding and re-initiating the
portfolio.
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We define the “set threshold” in (b) above, as the
average of the absolute values of daily returns of
all non-3σ days with a negative return in the entire
sample. We call this threshold the “trigger condition
to unwind.”

We have considered various periods of time over
which the portfolio remains unwound, including
2, 3, 5, 7, and 10 days. On each day in this interval
during which the portfolio remains unwound it is
assumed to earn the daily risk-free rate of 0.0103%.
This is based on the average annualTreasury bill rate
of 3.7% for the years 1926 through 2006.7

As a measure for transaction cost, we have used 5
basis points each way—that is, the portfolio incurs
a cost of 0.05% on the day it is unwound, and
another 0.05% when it is re-initiated. We have used
two sample periods in the portfolio analysis: the

Table 5 Performance statistics for alternative trading strategies based on extreme-move days.

Annual % of negative
mean Annual Sharpe 3-sigma-plus

return (%) sigma (%) ratio % Days days avoided

All data (1900–2006)
Actual 7.01 21.46 0.15

Hypothetical Portfolio
Unwound period 2 days 6.59 16.85 0.17 12% 54%
Unwound period 3 days 7.63 16.05 0.25 16% 65%
Unwound period 5 days 8.62 14.66 0.34 22% 75%
Unwound period 7 days 8.42 13.61 0.35 28% 80%
Unwound period 10 days 8.28 12.53 0.37 34% 86%

1936–2006 Only
Actual 9.45 17.76 0.32

Hypothetical Portfolio
Unwound period 2 days 7.42 14.57 0.26 12% 47%
Unwound period 3 days 7.04 14.03 0.24 16% 55%
Unwound period 5 days 7.53 12.94 0.30 23% 67%
Unwound period 7 days 7.45 11.98 0.31 29% 74%
Unwound period 10 days 7.07 11.03 0.31 36% 79%

Note: “% Days” is the percent of the trading days during which the portfolio remains invested in cash as opposed to
being invested in Dow.

entire sample of the 107 years, and the sub-sample
comprising the years 1936–2006. The results of our
analysis are presented in Table 5.

When the entire 107-year-period is considered, the
portfolio is found to outperform the Dow’s actual
annual average returns when the unwound period
is at least two days. The percentage of all trading
days during which the portfolio stays invested in
cash varies from 12% to 34%, depending on the
length of the unwound period.

Two findings warrant special attention: First, the
portfolio strategy yields a considerably lower volatil-
ity of returns than the actual Dow. While the
annualized standard deviation for the actual Dow
index is 21.46%, the portfolio’s annual σ is almost
400 basis points lower at 16.85%. Not unexpect-
edly, the portfolio’s σ diminishes considerably when
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the portfolio stays unwound for a longer period of
time. In this context, it is informative to consider
the Sharpe ratio (where we divide the difference
between the mean return and the risk-free annual
rate of 3.7% by the sigma of the return). In all
cases, the portfolio yields a higher Sharpe ratio than
the actual Dow’s returns. In fact, for the unwound
period of ten days, the Sharpe ratio for the portfo-
lio (0.37) is more than twice as large as the actual
Dow’s ratio (0.15).

Second, our portfolio strategy, with a rather sim-
ple trigger condition for unwinding, seems to be
fairly effective in avoiding negative 3σ+ days. Even
with an unwound period of only two days, the strat-
egy avoids 54% of the negative 3σ+ days. When
the unwound period increases to 10 days, this per-
centage jumps to 86%, implying that the trigger
condition is fairly accurate in predicting the next
negative extreme-move day.8

In Table 5, we also report the results of the portfolio
analysis using data only for the period 1936–2006.
For this period, the Dow’s actual mean annual-
ized return is 9.45% (as opposed to 7.01% for the
entire period of 1900–2006) and annualized sigma
is 17.76% (as opposed to 21.46% for 1900–2006).
Now, however, the portfolio does not outperform
the Dow. In fact, at its best—when the unwound
period is 5 days—the mean return is 7.53%, about
200 basis points worse than Dow’s actual perfor-
mance. It is not surprising that the asset-allocation
strategy has a more negative effect during the past
70 years. The stock market has enjoyed a particu-
larly strong long-term uptrend following the great
depression and the buy-and-hold investor has gen-
erally benefited from being totally invested in all
periods. But the portfolio’s volatility (σ) contin-
ues to be substantially smaller than Dow’s actual
volatility. Even with a two-day unwound period,
the portfolio’s annualized σ is 14.57% more than
250 basis points lower than Dow’s. The portfolio’s
Sharpe ratio is roughly comparable to the actual

Dow’s when the unwound period is 5 days or
longer.

The percentage of trading days affected by the
portfolio strategy is virtually identical regardless of
which period is considered, all 107 years or the
last 70 years. However, that is not the case for the
number of negative 3σ+ days avoided. Consistent
with the finding of lower returns for the sub-period
1936–2006, we find that the percentage of avoided
negative 3σ+ days is slightly smaller as well. With a
two-day unwound period, this percentage is 47%,
which rises to 79% when a ten-day unwound period
is applied.

While there is strong empirical evidence of a rela-
tionship between an extreme-move day and its
preceding three-day’s average return, we find that
this relationship is not predicable enough to devise
a dependable asset-allocation (market-timing) strat-
egy to outperform the market. However, if the
objective of the trading strategy is to reduce the
portfolio’s volatility, then the strategy seems to be
reasonably effective: from 50% to 80% of the nega-
tive extreme-move days are avoided by adopting the
strategy suggested by our duration model results.

6 Concluding comments

There has been considerable empirical work con-
firming that stock returns are not normally dis-
tributed. Moreover, we know that stock prices do
not follow a strict random-walk process and may, to
some extent, be predictable. The paper has exam-
ined the temporal properties of the “fat tails” of the
stock-return distributions. We found that there has
been a clustering of days when the stock market has
been subject to “extreme movements,” which we
define as daily stock returns that are three or more
standard deviations away from the mean return.
Moreover, a similar clustering of extreme move-
ments is shown to exist in the daily time series of
temperatures recorded in New York City.
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Utilizing a duration model we found that extreme
movements can, to some extent, be predicted on
the basis of unusually large movements in preced-
ing periods. One particularly robust finding is that
extreme movements in stock prices are usually pre-
ceded by large average daily movements during the
preceding three trading days. A similar finding was
reported for daily NY City temperatures.

The strong results suggest that it may be possi-
ble to fashion an asset-allocation strategy, whereby
the investor would switch from stocks to cash in
advance of predicted extreme negative returns in
the stock market. We found, however, that it was
not possible to use the predictability that exists
to improve an investor’s long-run return over the
return that would be earned by the buy-and-hold
investor who simply stayed fully invested in the
stock market. The market-timing strategy that we
simulated was, however, useful in reducing the
volatility of returns. Because the timing strategy
does permit the investor to avoid between half
and more than three quarters of the trading days
in which the market suffers substantial declines,
the suggested strategy does substantially lower the
volatility of the portfolio’s returns over time.

We have shown that a duration model analysis can
shed considerable light on the factors that are asso-
ciated with unusually large changes in the stock
market and the weather. The task for the future
is to better understand the underlying stochastic
processes common to many random phenomena.

Notes
1 Throughout the paper, when annualizing daily returns we

have assumed a 360-day calendar year.
2 We procured this data set from Weather Source.
3 We examine not only a three-day interval after a 3σ+ day,

but also before to explore whether a large move day can
be predicted by “pre-shocks”; by definition “after-shocks”
cannot have any predictive power. Later in this paper (see
Section 5), we explicitly explore this predictive relationship
by examining an asset allocation strategy.

4 The NBER study can accessed electronically at www.nber.
org/cycels.html.

5 In this context, the writings of Benoit Mandelbrot, who has
long argued for a fractal explanation of various disparate and
diverse stochastic phenomena, deserve special attention. In
his latest book, “The Misbehavior of Markets: A Fractal
View of Risk, Ruin, and Reward” he elaborates on his fractal
view of various random phenomena, including the behavior
of the financial markets.

6 To illustrate the point, consider one of the worst nega-
tive move days in Dow’s history, October 19, 1987, when
the Dow fell by 27% (in log returns). This day was pre-
ceded by fairly large negative move days: in the three days
prior to this day, the Dow fell on average by 3.7% per day
and cumulatively by nearly 11%. Yet, in the three day-
period following October 19, 1987 the Dow’s moves were
relatively uneventful.

7 Ibbotson Associates, 2007 Yearbook, Chicago, IL.
8 The reason that returns are not improved considerably even

though so many negative days are avoided is that many
extreme positive days are eliminated as well. As is well
known, a substantial part of the generous returns earned
by long-run equity investors comes from the infrequent
number of days when the market rallies sharply.
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