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I. INTRODUCTION

In count data models the endogenous variable takes only non-negative
integer values corresponding to the number of events occurring in a given
interval of time or space. Examples of count data model applications
include number of patents applied for by firms (Hausman, Hall, and
Griliches, 1984), number of visits to physicians (Cameron and Trivedi,
1986), number of trips to a recreational area (Hellerstein, 1991), number
of defective products in a manufacturing process (Lambert, 1992), and
number of takeover bids received by a target firm after an initial bid
(Jaggia and Thosar, 1993). Gurmu and Trivedi (1994) provide an excel-
lent survey of the relevant literature.

The benchmark model for count data is the Poisson model. In the
Poisson regression model, however, the conditional mean of the endogen-
ous variable given the exogenous variables is equal to its conditional
variance. To overcome this limitation several generalizations have been
proposed. Among these, negative binomial (NB) models, in which the
conditional variance can exceed the conditional mean (i.e., allow over-
dispersion), have been widely used. Within NB models, specifications
differ in their implied relationship between the conditional mean and
variance of the dependent variable. The purpose of this study is (a) to
propose tests for selection among the Poisson and NB models by formally
demonstrating that the loglikelihood function (LLF) of the general NB
model nests the LLF of the Poisson and the two most widely used
NB models as special cases, and (b) to propose estimation of the general
NB model since it allows greater flexibility in the relationship between the
mean and variance of the dependent variable than the widely used NB
specifications. An application to micro-level data on the number of recre-
ational boating trips illustrates the results.

* The authors thank Teofilo Ozuna for providing the data set used in this study.
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II. PRELIMINARIES

Let yi, i\1, . . . , n denote observations of an integer-valued discrete
variable. Let xi denote the ith row of the matrix of k regressors, and let
b be the kÅ1 vector of parameters. The Poisson model assumes that yi is
independently distributed as a Poisson variate with l i\exp (xi b)a0 being
the parameter of the distribution. In this model:

E[ yi ! xi]\Var ( yi ! xi)\l i. (1)

The negative binomial (NB) model’s a probability density function
(pdf ) is:
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Cameron and Trivedi (1986) have proposed, without loss of generality,
the parameterization y i\exp (xi b)\l i and g i\1/a exp (k · (xi b))\lk

i /a,
where a and k are non-negative parameters. Under this parameterization,
the relationship between the conditional variance and mean of yi

becomes:

Var ( yi ! xi)\E[ yi ! xi]+aE[ yi ! xi]2µk\l i+a ·l2µk
i (3)

where a is the overdispersion parameter. The loglikelihood function
(LLF) of the NB model is:
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where Zi\lk
i . The two most commonly used specifications in the econo-

metrics literature are the NBI and NBII models obtained by setting k\1
and k\0, respectively. Thus, the alternative models imply the following
relations between the conditional mean and variance of yi:

Poisson (a\0): Var ( yi ! xi)\E[ yi ! xi]\l i

NBI (k\1): Var ( yi ! xi)\E[ yi ! xi] · (1+a)\l i · (1+a)

NBII (k\0): Var ( yi ! xi)\E[ yi ! xi] · (1+aE[ yi ! xi])\l i · (1+al i).

III. MODEL  SELECTION  AND  ESTIMATION  ISSUES

It is clear from the expressions for conditional mean and variance that in
both NB models Var ( yi ! xi)\E[ yi ! xi]\l i, as in the Poisson, if the over-
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dispersion parameter a is zero. This observation is central to the model
selection tests in the existing literature (see Lee, 1986, and the references
therein). For example, to choose between Poisson and NBII, Cameron
and Trivedi (1996) propose to perform the following auxiliary OLS
regression without a constant:

( yiµl̂ i)2µyi

l̂ i

\al̂ i+ui (5)

where l̂ i\exp (xi b̂), with b̂ being the estimate of b from the Poisson
model, and ui denotes the error term. The t-statistic for a is asymptot-
ically normal under the null hypothesis of no overdispersion against the
alternative of overdispersion of the NBII form. To test the Poisson
against the NBI model, (5) is replaced by:

( yiµl̂ i)2µyi

l̂ i

\a+ui (5p)

Alternatively, one may estimate the NBI and NBII models and use an
asymptotic t-test on the estimate of the overdispersion parameter a.

The test procedures discussed above have been widely used and
warrant comments. Both tests are based on the null H0 :a\0 which
implies a specification wherein the conditional mean and variance of yi

are equal. Clearly, Poisson is not the only choice that meets this criterion.
There are numerous distributions that exhibit equality of first two
moments under appropriate parameter values. For the non-rejection of
the null H0 :a\0 to imply that Poisson is the preferred model, it is
necessary to show that the general NB pdf collapses to the Poisson pdf
when a is zero.

Another feature of the Poisson versus NB model selection tests
outlined above is their lack of generality. The values of k (1 and 0) that
yield the NBI and NBII models are arbitrary. For example, k can take a
value of 2, in which case, the relationship between the moments becomes
(see equation (3)): Var ( yi ! xi)\l i+a, a relationship no less plausible a
priori than that in NBI or NBII. More generally, k can take a range of
values (not necessarily integers) to yield valid NB model specifications.
But the model selection tests discussed above hold only for the two values
of k, zero and one, when, in fact, neither NBI or NBII may be the
preferred model.

The last point also brings up the issue of selection among NB model
specifications. In the existing literature, tests based on auxiliary regres-
sions similar to (5) and (5p) have been proposed for choosing between
NBI and NBII (see, for example, Cameron and Trivedi, 1986; Ozuna and
Gomez, 1995). The regression-based tests involve estimating a set of four
equations; they are not reproduced here in the interest of brevity. A far
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more direct approach to selection among NB models would be to
estimate the parameter k by maximizing a general NB likelihood function
that nests the NBI and NBII likelihoods as special cases. One can then
apply a standard hypothesis test on the maximum likelihood (ML)
estimate of k to decide which NB specification is preferred. In addition to
being more direct, this procedure is more general since it allows the
possibility of rejecting both, NBI and NBII.

The foregoing considerations motivate the following results:

(i) For all finite values of k, the LLF of the general NB model given
in (4) approaches the LLF of the Poisson model as a approaches
zero.

(ii) For all finite values of a, the LLF of the general NB model
becomes identical to the LLF of the NBI and NBII when k\1 and
k\0, respectively.

Part (ii) of the result is obvious from (4) and is presented here in the
interest of completeness. The proof of part (i) is available from the
authors on request. It is not unexpected that the general NB pdf nests the
Poisson pdf as a limiting case when a\0 because both the NB and
Poisson belong to the Katz (1963) family of distributions. However,
despite a thorough search, we failed to find a formal statement and proof
of the result in the existing literature.

Resulting (i) and (ii), in light of the arguments leading up to it, suggest
that k, a, and b should be jointly estimated by maximizing the likelihood
function in (4), which we will denote as the LLF of the general NB(NBG)
model. Because (4) is highly non-linear in parameters, convergence in an
iterative procedure to maximize this LLF can be a problem unless appro-
priate starting values are chosen. We propose the following steps. Step 1:
the parameters a and k are estimated through non-linear least squares
using the following auxiliary regression equation:

( yiµl̂ i)2µyi

l̂ i

\a(l̂ i)1µk+ui, (6)

where l̂ i has the same definition as in (5). Step 2: holding the parameters
a and k at their estimated values, maximize the LLF in (4) with respect
to the bs. Step 3: using the new estimate of b, denoted by b̂̂, form
l̂̂ i\exp (xi b̂̂); use b̂̂i to re-estimate (6), getting a second round estimate of
a and k. These estimates of a and k, and b̂̂ provide the starting values for
the maximization of (4).

Our result on the convergence of NBG’s LLF to that of Poisson also
has implications for model selection. The result implies that one can
simply use an asymptotic t-test using the ML estimate of a from the NBG
model to test the null H0 :a\0. Although the null hypothesis for the test
is not different from the tests in the existing literature, there are import-
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ant differences in terms of inference. In light of Result (i), non-rejection
of the null implies that the true model is Poisson, and not merely any
model wherein the conditional mean and variance of yi are equal.

IV. AN  APPLICATION

The empirical application belongs to the category of recreational demand
models. The data, collected through a survey of registered boat owners in
East Texas, have been used by Sellar, Stoll and Chauds (1985) and Ozuna
and Gomez (1995). The Sellar et al. paper contains detailed description of
the data set. The data on the dependent variable is the number of trips
made by survery respondents to Lake Sommerville in East Texas.
Summary statistics on the exogenous variables (except the intercept) with
a brief explanation are presented in Table 1. The travel costs to the lakes
can be viewed as a proxy for ‘price’ of receational boating.

All four models, Poisson, NBI, NBII, and NBG were estimated by
maximizing their respective LLFs. In the NBG model, the null hypothesis
of Poisson, H0 :a\0, is clearly rejected both by the asymptotic t-test and
the likelihood ratio test. The Poisson model is also rejected by NBI and
NBII. Within NB models, both NBI and NBII are also unambiguously
rejected. The P-values associated with the asymptotic t-statistic for
H0 : k\0 (null for NBII) and H0 : k\1 (null for NBI) are 0.0005 and

TABLE 1
Summary Statistics

Variable Standard
name Explanation Mean deviation

Quality Respondents’ rating score for Lake
Sommerville; (0\worst, 5\best)

1.4188 1.8120

Ski Dummy variable, equals one if respond-
ent skied at Lake Sommerville

0.3672 0.4824

Income Income of respondent’s household head 3.8528 1.8519
CostS Cost of travelling to and from Lake

Sommerville ($)
60.038 46.339

CostC Cost of travelling to and from Lake
Conroe ($)

55.424 46.683

CostH Cost of travelling to and from Lake
Houston ($)

55.869 45.900

Trip Dependent Variable; number of trips
respondent took to Lake Sommer-
ville; max.\88; min.\0; % of
zeros\63.3

2.2443 6.2925

Total number of observations 659
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0.0009, respectively. This finding supports our contention that NBI and
NBII are arbitrary specifications and may be rejected in many
applications.

The inferential consequences of incorrect model specification are
evident from the marginal effects of regressors in different models. In our
model all explanatory variables were normalized by their mean; hence the
jth regressor’s elasticity evaluated at the sample mean is simply b j. In the
interest of brevity, we have compared only quality and own price (proxied
by travel cost) elasticities of recreational demand across the four models.
The results are presented in Table 3. We have taken the elasticity
estimate from the NBG model as a benchmark and have computed its
percentage difference from the corresponding elasticity in the other three

TABLE 2
Estimation Results

Models*

Coefficient Variable Poisson NBI NBII NBG

b1 Quality 0.7047 0.8372 1.0321 0.9787
(28.800) (16.958) (7.433) (16.945)

b2 Ski 0.2322 0.1389 0.2244 0.1912
(11.786) (3.370) (4.098) (3.667)

b3 Income µ0.2966 µ0.0723 µ0.0865 µ0.1343
(4.180) (0.593) (0.184) (0.909)

b4 CostS µ4.7770 µ3.3340 µ5.8455 µ4.5657
(31.715) (10.099) (11.233) (8.654)

b5 CostC 1.2059 0.6346 2.6299 1.1868
(4.698) (1.121) (2.154) (1.669)

b6 CostH 2.6111 2.6500 2.6858 2.7326
(11.756) (4.963) (2.005) (4.962)

b7 Intercept µ0.0016 µ0.6646 µ1.1408 µ0.9916
(0.017) (3.317) (1.509) (6.818)

a 5.7421 1.3118 2.7962
(8.485) (7.606) (4.341)

k 0.5137
(3.620)

LLF value µ1367·53 µ816·27 µ821·42 µ813·03
Asymptotic t-stat. for

H0 :k\1
3.3072

(0.0009)**

Notes:
* Absolute value of asymptotic t-ratios in parentheses.
**Denotes P-value.
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models. For example, the estimated quality elasticity in the Poisson model
is 28 percent larger than the corresponding estimate in NBG. That esti-
mates of elasticity would differ across models is to be anticipated; but the
magnitude of the differences is somewhat unexpected and it, once again,
highlights the need for a general model specification.

V. CONCLUDING  COMMENTS

Count data models have found a wide variety of applications not only in
applied economics and finance but also in diverse fields ranging from
biometrics to political science. Poisson and negative binomial (NB) are
two most extensively used model specifications in count data analysis.
Unlike the Poisson, NB models allow overdispersion, that is, allow the
conditional variance of the dependent variable to be larger than the
conditional mean. Since overdispersion is frequently encountered in count
data, two particular NB model specifications, NBI and NBII have been
especially popular. However, these models impose arbitrary restrictions
on the relationship between the conditional mean and variance of the
dependent variable, limiting their generality.

The existing model selection tests (for Poisson versus NB) are framed
only in terms of the alternatives of NBI or NBII when, in fact, the
preferred model may be neither. Our contribution lies in formally demon-
strating that the loglikelihood function (LLF) of a general NB model,
that nests the LLFs of NBI and NBII, collapses to the Poisson model’s
LLF when the overdispersion parameter approaches zero. Thus, the LLF
of all three model specifications, Poisson, NBI, and NBII, are para-
metrically nested within the general NB model’s LLF as special cases;
these parameter restrictions can be tested by simple asymptotic
t-tests.

The empirical application, which uses micro-level data on recreational
boating, provided support for the paper’s main theme. Tests clearly
rejected not only the Poisson, but also NBI and NBII, in favour of a
different NB model, underscoring the importance of the general model
specification.

TABLE 3
Elasticity Comparison Across Models

% difference from NBG model estimate
Elasticity NBG
of: estimate Poisson NBI NBII

Quality 0.9787 µ28.0 µ14.5 +5.5
Own price (CostS) µ4.5657 µ4.3 +25.3 µ26.3
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